Refinable Functions with Non-integer Dilations

نویسندگان

  • XIN-RONG DAI
  • YANG WANG
چکیده

Refinable functions and distributions with integer dilations have been studied extensively since the pioneer work of Daubechies on wavelets. However, very little is known about refinable functions and distributions with non-integer dilations, particularly concerning its regularity. In this paper we study the decay of the Fourier transform of refinable functions and distributions. We prove that uniform decay can be achieved for any dilation. This leads to the existence of refinable functions that can be made arbitrarily smooth for any given dilation factor. We exploit the connection between algebraic properties of dilation factors and the regularity of refinable functions and distributions. Our work can be viewed as a continuation of the work of Erdös [6], Kahane [11] and Solomyak [19] on Bernoulli convolutions. We also construct explicitly a class of refinable functions whose dilation factors are certain algebraic numbers, and whose Fourier transforms have uniform decay. This extends a classical result of Garsia [9].

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : 0 80 4 . 22 03 v 1 [ m at h . N A ] 1 4 A pr 2 00 8 REFINEMENT EQUATIONS AND SPLINE FUNCTIONS

In this paper, we exploit the relation between the regularity of refinable functions with non-integer dilations and the distribution of powers of a fixed number modulo 1, and show the nonexistence of a non-trivial C∞ solution of the refinement equation with non-integer dilations. Using this, we extend the results on the refinable splines with non-integer dilations and construct a counterexample...

متن کامل

Refinement equations and spline functions

In this paper, we exploit the relation between the regularity of refinable functions with non-integer dilations and the distribution of powers of a fixed number modulo 1, and show the nonexistence of a non-trivial C∞ solution of the refinement equation with non-integer dilations. Using this, we extend the results on the refinable splines with non-integer dilations and construct a counterexample...

متن کامل

Classification of Refinable Splines

A refinable spline is a compactly supported refinable function that is piecewise polynomial. Refinable splines, such as the well known B-splines, play a key role in computer aided geometric designs. So far all studies on refinable splines have focused on positive integer dilations and integer translations, and under this setting a rather complete classification was obtained in [12]. However, re...

متن کامل

Structure of Refinable Splines

A refinable spline is a compactly supported refinable function that is piecewise polynomial. Refinable splines, such as the well known B-splines, play a key role in computer aided geometric designs. Refinable splines have been studied in several papers, most noticably in [7] for integer dilations and [3] for real dilations. There are general characterizations in these papers, but these characte...

متن کامل

St Reading Symmetric Multivariate Wavelets 5

For arbitrary matrix dilation M whose determinant is odd or equal to ±2, we describe 17 all symmetric interpolatory masks generating dual compactly supported wavelet systems with vanishing moments up to arbitrary order n. For each such mask, we give explicit 19 formulas for a dual refinable mask and for wavelet masks such that the corresponding wavelet functions are real and symmetric/antisymme...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007